Nicolas Lee 软件折腾工程师

离散傅里叶变换物理意义


转载说明:原文图片已经失效,特意把图片找到上传了一下。另外文中部分内容本人还不甚了解,所以特此转载,以便之后随时翻看。

由于公司的一个项目有部分需求为求一个波形的有效值,峰值,频率,相位等,看网上的资料用傅里叶变换的比较多,而且我们的单片机平台式dsp因此学习一下dsp的fft变换,以后想做音频频谱分析的时候也可以奠定基础。

傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解傅里叶原理的意义。傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅里叶变换算法对应的是反傅里叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。”任意”的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅里叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅里叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))。 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 先来看一个变换实例,一个原始信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2+1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围),如下图: 9个正弦信号: 在这里插入图片描述 9个余弦信号: 在这里插入图片描述 把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图: 在这里插入图片描述 上图中左边表示时域中的信号,右边是频域信号表示方法,从左向右表示正向转换(Forward DFT),从右向左表示逆向转换(Inverse DFT),用小写x[]表示信号在每个时间点上的幅度值数组, 用大写X[]表示每种频率的副度值数组, 因为有N/2+1种频率,所以该数组长度为N/2+1,X[]数组又分两种,一种是表示余弦波的不同频率幅度值:Re X[],另一种是表示正弦波的不同频率幅度值:Im X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅里叶变换长度是N,而不是N/2+1)。 FFT是离散傅里叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。 FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍。 采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。 假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号aa+bb,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)cos(2piFnt+Pn),即2An/Ncos(2piFnt+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。 下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:S=2+3cos(2pi50t-pi30/180)+1.5cos(2pi75t+pi90/180)。式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。 在这里插入图片描述 从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看: 1点: 512+0i 2点: -2.6195E-14 - 1.4162E-13i 3点: -2.8586E-14 - 1.1898E-13i 50点:-6.2076E-13 - 2.1713E-12i 51点:332.55 - 192i 52点:-1.6707E-12 - 1.5241E-12i 75点:-2.2199E-13 -1.0076E-12i 76点:3.4315E-12 + 192i 77点:-3.0263E-14 +7.5609E-13i 很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下: 1点: 512 51点:384 76点:192 按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。 然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度就是1801.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。 在这里插入图片描述 总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。 6

下面是通用的fft处理程序

#include “DSP281x_Device.h” // DSP281x Headerfile Include File #include “DSP281x_Examples.h” // DSP281x Examples Include File #include “f2812a.h” #include”math.h” #define PI 3.1415926 #define SAMPLENUMBER 128

void InitForFFT(); void MakeWave(); //void FFT(float dataR[SAMPLENUMBER],float dataI[SAMPLENUMBER]);

int INPUT[SAMPLENUMBER],DATA[SAMPLENUMBER]; float fWaveR[SAMPLENUMBER],fWaveI[SAMPLENUMBER],w[SAMPLENUMBER]; float sin_tab[SAMPLENUMBER],cos_tab[SAMPLENUMBER];

void FFT(float dataR[SAMPLENUMBER],float dataI[SAMPLENUMBER]) { int x0,x1,x2,x3,x4,x5,x6,xx; int i,j,k,b,p,L; float TR,TI,temp;

/********** following code invert sequence ************/
for ( i=0;i<SAMPLENUMBER;i++ )
{
	x0=x1=x2=x3=x4=x5=x6=0;
	x0=i&0x01; x1=(i/2)&0x01; x2=(i/4)&0x01; x3=(i/8)&0x01;x4=(i/16)&0x01; x5=(i/32)&0x01; x6=(i/64)&0x01;
	xx=x0*64+x1*32+x2*16+x3*8+x4*4+x5*2+x6;
	dataI[xx]=dataR[i];
}
for ( i=0;i<SAMPLENUMBER;i++ )
{
	dataR[i]=dataI[i]; dataI[i]=0; 
}
/************** following code FFT *******************/
for ( L=1;L<=7;L++ )
{ /* for(1) */
	b=1; i=L-1;
	while ( i>0 ) 
	{
		b=b*2; i--;
	} /* b= 2^(L-1) */
	for ( j=0;j<=b-1;j++ ) /* for (2) */
	{
		p=1; i=7-L;
		while ( i>0 ) /* p=pow(2,7-L)*j; */
		{
			p=p*2; i--;
		}
		p=p*j;
		for ( k=j;k<128;k=k+2*b ) /* for (3) */
		{
			TR=dataR[k]; TI=dataI[k]; temp=dataR[k+b];
			dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p];
			dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p];
			dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p];
			dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p];
		} /* END for (3) */
	} /* END for (2) */
} /* END for (1) */
for ( i=0;i<SAMPLENUMBER/2;i++ )
{ 
	w[i]=sqrt(dataR[i]*dataR[i]+dataI[i]*dataI[i]);
} } /* END FFT */ main() {
int i;

InitForFFT();
MakeWave();
for ( i=0;i<SAMPLENUMBER;i++ )
{
	fWaveR[i]=INPUT[i];
	fWaveI[i]=0.0f;
	w[i]=0.0f;
}
FFT(fWaveR,fWaveI);
for ( i=0;i<SAMPLENUMBER;i++ )
{
	DATA[i]=w[i];
}
while ( 1 );	// break point } void InitForFFT() {
int i;

for ( i=0;i<SAMPLENUMBER;i++ )
{
	sin_tab[i]=sin(PI*2*i/SAMPLENUMBER);
	cos_tab[i]=cos(PI*2*i/SAMPLENUMBER);
} } void MakeWave() {
int i;

for ( i=0;i<SAMPLENUMBER;i++ )
{
	INPUT[i]=sin(PI*2*i/SAMPLENUMBER*3)*1024;
} }

作者:云在青天水在瓶-_- 来源:CSDN 原文:https://blog.csdn.net/fz835304205/article/details/12200863 版权声明:本文为博主原创文章,转载请附上博文链接!


Content